
Mehr Wert durch Sonnenenergie!

Der solarthermische Konzentrator.

Effizienz

• Es handelt sich um den Solargenerator mit der höchsten zertifizierten Solarkeymark-Effizienz der Welt: 91%!

- Da es sich um einen zweiachsigen Solartracker handelt, ist diese außergewöhnliche Effizienz an allen Tagen und zu jeder Tageszeit stabil.
- Eine minimale und sehr einfache Wartung hält die Effizienz über die Zeit unverändert.
- Der Solartracker erzeugt Wärmeenergie bei einem eingestellten Zieltemperaturwert von bis zu 100°.

EOSTH ist einzigartig!

Insbesondere im Vergleich zu herkömmlichen flachen Solarplatten sind sowohl die Effizienz als auch die Leistung des Konzentrators wesentlich höher.

Einsparungen

Erhebliche Reduzierung der Energiekosten für alle Energieversorger, die regelmäßig die Wärme, für verschiedene Prozesse nutzen, darunter:

Warmwasser - Heizung - Klimaanlage - Entfeuchtungs- / Trockenanlagen - Dampferzeugung - Wäsche - Pasteurisierung -Trocknen - Entsalzungsanlagen - Verwertung und Aufwertung von thermischen Abfällen

Die Vorrichtung kann in Agrarbetrieben, in Gewächshäusern, Sportzentren, Gemeinden, Hotels, Bed & Breakfast, Molkereien, Brauereien, Wurstfabriken, Industriewäschereien, Verarbeitungs- und Handelszentren Anwendung finden. Ebenfalls Nutzen tragen Deponien von: Agrarrohstoffen, Stoffen, Papier, Chemikalien, Pharmaprodukten usw.

Der solarthermische Konzentrator.

Staatliche Zuschüsse / Steuerliche Vergünstigungen / Umweltvorteile

In vielen Staaten kann EOSTH mit staatlichen Zuschüssen und steuerlichen Vergünstigungen montiert werden; bei gleichzeitiger äußerster Umweltfreundlichkeit.

Ein in Italien installierte EOSTH-Standard-Anlage erzeugt ungefähr 30/50.000 kWhth pro

Jahr (Version mit 10/14 Spiegel) und vermeidet die Emission von ungefähr 6-12 Tonnen Kohlendioxid und Feinstaub in die Atmosphäre.

In Italien ist in dem geltenden Beitrag zum Wärmekonto 2.0 Folgendes enthalten: 50° Euro 16.716/23.402, pro Maschine.

Vorteile

Die Einführung der Technologie EOSTH-Solarkonzentrator ermöglicht:

- Langfristig nachhaltige technologische Lösungen (Produktlebenszyklus 30 Jahre und mehr), die die Wartungskosten des bereits vorhandenen Anlagenteils und die Nutzungsdauer senken, zu realisieren.
- Kraftstoffkosten zu senken.
- Die Lebensdauer des Heizkessels zu verlängern und die Wartungskosten zu senken.
- Die CO2- und Feinstaubemissionen in der Umwelt drastisch zu reduzieren.
- Die Qualität der Arbeitsumgebung zu verbessern, indem Rauchgasabgabe und Lärm reduziert werden.
- Den Produktionsprozess nachhaltiger zu gestalten.
- Nicht genutzte Bereiche von Gebäuden wieder zu valorisieren und verwenden.
- Das Unternehmensimage zu verbessern.
- Den effektiven Wert des Endprodukts zu erhöhen, indem es ökologischer gemacht wird.
- Von wichtigen staatlichen Zuschüssen profitieren und/oder Steuervorteile zu erlangen: in Italien das Wärmekonto 2.0, usw.

in Österreich ECOFONDS-Förderung von 20% bis 45% für innovative Systeme in Deutschland BAFA-Förderung für kleine und mittlere Unternehmen maximal 20.000€

• Verbesserung des mittel- und langfristigen wirtschaftlichen Ergebnisses.

EOSTH WIRD IN ITALIEN HERGESTELLT!

Technisches Datenblatt EOSTH Parabolspiegel

	batemblatt 2001111 alaboispieger		Valore / Value	Valore / Value	
Descrizione / Descri	otion	Unità / Unit	EOS TH 10 Spiegel	EOS TH 14 Spiegel	
Allgemeine Daten	Konzentrationsfaktor (geometrisch)	-	144		
	Einzel kollektor bereich AG/Aa	m²	3,86 / 3,72		
	Anzahl Spiegel	nr.	10	14	
	Gesamtflä che der Spiegel	m²	3,863x5 = 19,315	3,863x7 = 27,041	
	Tracking-Technologie	2 Achsen	-		
	Azimutwinkel	Grad	0 / 330°		
	Hebewinkel	Grad	-7 / +90°		
	Tracking-Kontrolle	Ast	tronomische Positionskontrolle		
	Zeigegenauigkeit		<0,05°		
	Betriebsumgebungstemperatur	°C	- 20 > + 55		
	Moduli termici / Thermal modules	Nr.	5	7	
Thermische Daten	Thermische Spitzenleistung bei 0°	kWth	3,51x5 = 17,55	3,51x7 = 24,57	
	Flüssigkeit		Glykollösung		
	Maximale Temperatur der Flüssigkeit	°C	100°		
	Stagnations temperatur	°C	160°		
	Maximaler Betriebsdruck	kPa	200		
Abmessungen	Betriebswindgeschwindigkeit (max)	km/h	40		
	Zulässige Windgeschwindigkeit (max)	km/h	130		
	Gewicht (ohne Fundamente und Zubehör)	kg	1.700 / 1,700	2.100 / 2,100	
	Arbeitshöhe	m	4,2		
	Tiefe	m	3,0		
	Breite	m	6,2	8,7	
Effizienz	Termisch 0°		90,9% DNI		
	Einzel kollektor energie Qsol (50°C) Atene	kWht/anno	4776		
	Einzel kollektor energie Qsol (75°C) Atene	kWht/anno	3978		
	Jahresproduktion pro m2 Bruttofläche Atene	kWht/m2anno	1236,34		

Farben RAL 9010 weiß RAL 7016 Anthrazitgrau RAL 6005 grün RAL 5012 blau

Solarkeymark Kiwa N° 16223 Rev.0.

Test report ENEA N° RP.2019.COL.204.2

Potenza del singolo collettore / Síngle collector power

Potenza di pieco (G = 1000 W/m^2) per singolo collettore: Single collector peak power (G = 1000 W/m^2):

3510 W_{peak}

т т по	Radiazione diretta / Direct normal irradiance (DNI)			
Tm - T, [K]	400 W/m ²	700 W/m ²	1000 W/m ²	
0	1404	2457	3510	
10	1374	2427	3480	
30	1245	2298	3351	
50	1023	2076	3129	
70	709	1762	2815	
90	302	1355	2407	

